Fuel’s Gold: 10 More Unusual Alternative Energy Sources

Mankind’s quest for energy has successively centered on wood, coal and oil though these fuels are slowly giving way to nuclear, wind and geothermal power sources. Even newer fuels have sparked alternatives, however, and what today seems odd and impractical may someday be commonplace. These 10 unusual alternative energy sources show real hope that goes beyond the usual hype.

Used Adult Diapers

(image via: InventorSpot)

Adult diapers – they’re more common than you think, especially in Japan where the average population is aging rapidly and the national output of used adult diapers has soared past the 5 billion mark. A company called Super Faiths thinks there’s a better use for used adult diapers than simply burying them – why not burn them as fuel?

(images via: InventorSpot, Green Launches, Japan Times and Now Public)

The SFD Recycle System pulverizes and sterilizes used adult diapers, then forms them into pellets suitable for fueling large biomass boilers. The machines are rather large and are designed to process large numbers of adult diapers, not a problem because the expected users are large hospitals and retirement homes.

Urine

(image via: Unique Daily)

Microbial fuel cells (MFCs) are being developed by a number of researchers who seek to employ specialized bacteria to break down waste products of various types and, in the process of doing so, create energy that can be stored for future use. A team of British researchers is working with urine (from either Man or beast) as a medium, explaining that “Urine is chemically very active, rich in nitrogen and has compounds such as urea, chloride, potassium and bilirubin which make it very good for the microbial fuel cells.”

(images via: EbooksX, Next Energy News, Space Fellowship and AOL News)

Organizations such as NASA have taken specific interest in MFCs that use urine and other, er, related wastes to produce energy as such substances would tend to either accumulate on board a spacecraft or would have to be ejected into space. Remember that the next time you wish upon a “star”.

Confiscated Booze

(image via: Autoblog Green)

You’ve heard that drinking and driving doesn’t mix, but don’t tell Svensk Biogas AB. The Swedish biogas company is partnering with the Scandinavian nation’s customs service to process 185,000 gallons of seized smuggled alcohol seized by the customs service last year into enough biogas to power over 1,000 buses and trucks – even a train (above). “We used to just pour it down the drain, but because of the increased volumes we had to look around for new solutions,” said Swedish customs spokeswoman Ingrid Jerlebrink. With the new partnership agreement in place, “We pump it into a big tank that we jokingly call ‘the giant cocktail’ and then a truck just comes and picks it up.”

(images via: Brain Tree Hemp, BUSS Branschen and Daily Echo)

The Svensk Biogas AB plant in Linkoping, located 125 miles southwest of Stockholm, heats the confiscated booze and converts into biogas. One quart of pure alcohol is required to produce about a tenth of a gallon of biogas, and according to Carl Lilliehook, head of Svensk Biogas AB, “It is good business, because the material to make it is free.”

People Power

(images via: Daily Mail)

Power to the people? How about power FROM the people! A number of initiatives currently being pursued look to harness the kinetic energy created – and wasted – by groups of people performing energetic tasks. One project already in place in Tokyo, Japan, uses piezoelectric floor pads positioned where pedestrian commuters are more likely to tread: outside train stations and beneath ticket turnstiles, for instance.

(images via: Inhabitat, Glam and Telegraph UK)

Commuters can be somewhat tired and listless, but there are other places where people expend a lot of energy and have fun doing it – like dancing and working out. The former takes place at Club Watt in Rotterdam, The Netherlands, which calls itself “The World’s First Sustainable Dance Club.” The club’s dance floor features embedded LEDs that are powered by kinetic energy generated by dancers. Bee Gees, met BTUs. The latter occurs at so-called “green gyms” like Green Revolution, where a group cycling class with 20 bikes can generate up to 3.6 megawatts of renewable electrical energy annually – more than enough to pedal, er, peddle elsewhere.

Burning Seawater

(image via: Radiowaves)

How fortunate we would be if it were possible to drink seawater AND use it as fuel. Well surprisingly enough, one of those wishes might soon be answered and grab a beer because it’s not the first. Leukemia patient and researcher John Kanzius has been experimenting with a new cancer-fighting technique that destroys cancer-causing agents through the use of radio waves.

(images via: CBS News, Amazon and How Stuff Works)

Kanzius noted that his radio-frequency generator broke the water molecules in the seawater into their component elements: hydrogen and oxygen, and as anyone familiar with the 1937 Hindenburg Disaster knows, hydrogen will burn fiercely in the presence of oxygen. As long as Kanzius kept his generator on, the seawater “burned” at a temperature of 3,000 degrees Fahrenheit. Oh, the huge potential!

Poultry Waste

(image via: Ribotto)

There’s a way to turn previously useless agricultural byproducts into clear, clean, fuel oil – if, that is, you’ve got the guts. Turkey guts, in this case. The recipe may sound disgusting but it works: grind poultry heads, feathers and innards fine and mix with water, then heat to 500 degrees Fahrenheit at 600 psi. Cook for about an hour, or until the complex polymers in the offal mix start to break down. A little distillation and what was once garbage is now as good as gold… black gold.

(images via: Chemistryland and Chosun)

Changing World Technologies is behind the push to turn organic, carbon-based waste from computer parts to turkey guts into fuel oil through thermo-depolymerization. Nature herself has paved the way: the billions of barrels of oil and gas buried deep underground were once living plants and animals “processed” into hydrocarbons by heat and pressure over hundreds of millions of years. CWT just speeds up the process a bit.

Landfill Gas

(image via: Savvy Studios)

So you’ve got a landfill that, like most landfills, burps (for want of a better word) methane from decomposing buried garbage. What to do? Well, one idea is to pipe it to a nearby school. Well, not directly – the EcoLine project uses purified methane gas captured from a nearby landfill to power 85 percent of the University Of New Hampshire’s heat and electricity needs. Rivals may still say UNH stinks but no, it’s just the landfill gas.

(images via: Treehugger and CNBC)

With the EcoLine project, UNH becomes the first school in the nation to source a majority of its power from landfill gas. The power isn’t free – infrastructure must be put in place to trap, store and purify the methane – but it’s significantly cheaper than burning fossil fuel with the added benefit of being non-polluting.

Cow Farts

(image via: Gr33nData)

Research by Argentine scientists has revealed that a single 1,210 lb (550 kg) cow produces 28 to 35 cubic feet (800 to 1,000 liters) of methane emissions each day – and let’s be frank, by “emissions” we don’t mean evaporating sweat. Nope, it’s cow farts. Cow burps too; these multi-stomached ruminants emit copious clouds of methane from both ends. Lucky for them some prankster doesn’t walk up with a lit match.

(images via: China Post and Thomas LaCour)

Methane is a much more reactive greenhouse gas compared to carbon dioxide and unlike CO2, it burns quite nicely. If only there were some practical way to capture the methane emitted by cows, sheep, goats, llamas… basically ANY domestic livestock, we’d be killing two birds with one stone. The cumbersome collection tank mounted on the recalcitrant bovine above is one possible solution but if not that, what?

Coffee Grounds

(image via: Daniel Talsky)

Next to oil, coffee is the most traded commodity on the planet. Unlike oil, coffee production and preparation creates a lot of waste. Now it seems that this so-called waste – coffee grounds in particular – can be put to good use as a fuel. Researchers at the University of Nevada’s Department of Chemical and Materials Engineering analyzed coffee grounds and discovered they contain a significant percentage of oil in the form of biodiesel. What’s more, the natural anti-oxidants in the extracted coffee oil help extend its shelf life. The leftover grounds can be compacted and burnt as pelletized fuel.

(images via: Science of Coaching Squash, Marilka and BHIP Global)

While home users won’t be able to do much with their used coffee grounds beyond composting them, major coffee retailers could reap huge rewards by changing the way they treat waste grounds. It’s estimated that Starbucks generates 210 million pounds of coffee grounds annually. Processing these grounds could provide nearly 3 million gallons of biodiesel and about 90,000 tons of fuel pellets.

Bouncing Breasts

(image via: Slate)

What two things do female joggers have in common? If you answered breasts and MP3 players, you’d be right – and you probably need to get out more. The question is relevant, however, because some joggers have posited powering their iPods with energy generated by the repetitive motions of their breasts. Though companies like Triumph Japan have shown off solar-powered bras, there’s real science behind harnessing, if you will, the power of bouncing breasts. Victoria’s Circuit… you’ve gotta love it!

(images via: The Silverbacks and Zimbio)

LaJean Lawson works as a consultant for sportswear companies like Nike and has been researching breast motion since 1985 in an effort to design better sports bras. Lawson discovered that a runner’s breasts move from side to side, from front to back, and up and down with the most motion is generated vertically. That may seem obvious; this more so: “Naturally, the bigger the breast, the more momentum it generates.” Giggity.

(image via: HubPages)

Alternative energy sources are only unusual in the sense that they are unused, impractical, unprofitable or all of the above. That may just mean the times aren’t right for their implementation. Petroleum was known to the ancients but it wasn’t until late in the Industrial Revolution that oil was effectively sourced and processed into usable forms. It’s unknown what the future will hold for energy, but at least it’s certain there ARE alternatives.

Connect

SyndicatedTV Widget